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Table 8.5 Pentium II Memory Management Parameters
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Figure 8.21 Pentium Memory Address Translation Mechanisms

PowerPC Memory-Management Hardware

The PowerPC provides a comprehensive set of addressing mechanisms. For
32-bit implementations of the architecture, a paging scheme with a simple
segmentation mechanism is implemented. For 64-bit implementations, paging
and a more powerful segmentation mechanism are supported. In addition, for
both 32-bit and 64-bit processors there is an alternative hardware mechanism,
known as block address translation. Briefly, the block addressing scheme is
designed to address one drawback of paging mechanisms. With paging, a large
number of pages may be frequently referenced by a program. For example, pro-
grams that use OS tables or graphics frame buffers may exhibit this behavior.
The result may be that frequently used pages are constantly paged in and out.
Block addressing enables the processor to map four large blocks of instruction
memory and four large blocks of data memory in a way that bypasses the paging
mechanism.

A discussion of block addressing is beyond the scope of this chapter. In this
subsection, we concentrate on the paging and segmentation mechanisms of the
32-bit PowerPC. The 64-bit scheme is similar.

The 32-bit PowerPC makes use of a 32-bit effective address (Figure 8.22a). The
address includes a 12-bit byte selector and a 16-bit page identifier. Thus,
212 = 4 KByte pages are used. Up to 2! = 64 K pages per segment are allowed.
Four bits of the address are used to designate one of 16 segment registers. The con-
tents of these registers are controlled by the operating system. Each segment regis-
ter includes access control bits and a 24-bit identifier, so that the 32-bit effective
address maps into a 52-bit virtual address (Figure 8.23).
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Figure 8.22 PowerPC 32-Bit Memory-Management Formats

The PowerPC makes use of a single inverted page table. The virtual address is
used to index into the page table in the following manner. First, a hash code is com-
puted as follows:

H(0...18) = SID(5...23) @ VPN(0...18)

The virtual page number in the virtual address is padded on the left (most
significant end) with three binary zeros to form a 19-bit number. Then a bit-by-bit
exclusive-or is calculated of that number and the 19 right-most bits of the vir-
tual segment ID to form a 19-bit hash code. The table is organized as n groups of
8 entries. From 10 to 19 bits of the hash code (depending on the size of the page
table) are used to select one of the groups in the table. The memory-management
hardware then scans the eight entries of the group to test for a match with the vir-
tual address.

To do the match, each page table entry includes the virtual segment ID and the
leftmost 6 bits of the virtual page number, called the abbreviated page index (because
at least 10 bits of the 16-bit virtual page number always participate in the hash to select
a page table entry group, only an abbreviated form of the virtual page number need be
carried in the page table entry to match the virtual address). If there is a match, then
the 20-bit real page number from the address is concatenated with the lower 12 bits of
the effective address to form the 32-bit physical address to be accessed.
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Figure 8.23  PowerPC 32-Bit Address Translation

If there is no match, then the hash code is complemented to produce a new
page table index that is in the same relative position at the opposite end of the table.
This group is then scanned for a match. If no match is found, a page fault interrupt
occurs.

Figure 8.22 shows the logic of the address translation mechanism, and Figure 8.23
shows the formats of the effective address, page table entry, and real address. Finally,
Table 8.6 defines the parameters in the page table entry.

The 64-bit memory management scheme is designed to be upwardly com-
patible with the 32-bit implementation. In essence, all effective address-
es, general registers, and branch address registers are extended on the left to
64 bits.
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Table 8.6 PowerPC Memory Management Parameters

Segment Table Entry
Effective Segment ID e
Indicates one of 64G effective segments; used to determine entry in segment table.
Entry Valid (V) bit :
Indicates whether this is a memory or /0 segment
Segment Type (T) bit L ‘
Indicates whether this is a memory or /O segment .
Supervisor Key (Ks) ‘ ‘
Used with the virtual page number to determine entry in page table.
Page Table Entry
Entry Valid (V) bit
Indicates whether there is valid data in this entry. :
Hash Function Identifier (H) : ‘
Indicates whether thisisa primary or secondary hash entry. e
Abbreviated Page Index (APT)
Used to match a virtual address uniquely. i
Referenced (R) bit . v ; ~;
This bit is set to'1 by the processor when a read or write operation to the corresponding page OcCurs.
Changed (C) bit : ' . , L
This bit is set to 1 by the processor when a write operation to the corresponding page OCCuIs.
WIMG bits ' . o S
W = 0: use write-back policy; W = 1: use write-through policy.
I = 0: caching not inhibited; I = 1: caching inhibited.
M = 0: not shared memory; M = 1. shared memory.
G = 0:not guarded memory; G = 1: guarded memory.
Page Protection (PP) bits ¥
'Access control bits used with K bits from segment register or segment table entry to define access rights.

8.5 RECOMMENDED READING AND WEB SITES

[STALO5] covers the topics of this chapter in detail.

STALO5 Stallings, W. Operating Systems, Internals and Design Principles, Fifth Edition.
Upper Saddle River, NJ: Prentice Hall, 2005. -

Recommended Web Sites:

e Operating System Resource Center: A useful collection of documents and papers on a
wide range of OS topics
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* ACM Special Interest Group on Operating Systems: Information on SIGOPS publica-
tions and conferences

* IEEE Technical Committee on Operating Systems and Applications: Includes an
online newsletter and links to other sites

* Review of Operating Systems: Comprehensive review of commercial, free, research,

and hobby OSs
8.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS
Key Terms
batch system multitasking resident monitor
- demand paging nucleus segmentation
Lg‘ri;;iie!’iwtiv,f:, operating system operating system (OS) short-term scheduling
 imterrupt - paging swapping
- job control language (JCL) page table thrashing
kermel o partitioning - time-sharing system
logicaladdress '~ | physical address translation lookaside buffer
“long- cheduling privileged instruction ' (TLB)
- process utility

process control block virtual memory

process'state !

real memory

Review Questions

8.1 What is an operating system?

8.2 List and briefly define the key services provided by an operating system.
8.3 List and briefly define the major types of OS scheduling.

8.4 What is the difference between a process and a program?

8.5 What is the purpose of swapping?

8.6 If a process may be dynamically assigned to different locations in main memory, what
is the implication for the addressing mechanism?

8.7 Isit necessary for all of the pages of a process to be in main memory while the process
is executing?
8.8  Must the pages of a process in main memory be contiguous?
8.9 Is it necessary for the pages of a process in main memory to be in sequential order?
8.10  What is the purpose of a translation lookaside buffer?

Problems

8.1 Suppose that we have a multiprogrammed computer in which each job has identical
characteristics. In one computation period, T, for a job, half the time is spent in /O
and the other half in processor activity. Each job runs for a total of N periods. Assume
that a simple round-robin priority is used, and that I/O operations can overlap with
processor operation. Define the following quantities:
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« Turnaround time = actual time to complete a job

o Throughput = average number of jobs completed per time period T.

e Processor utilization = percentage of time that the processor is active (not waiting)
Compute these quantities for one, two, and four simultaneous jobs, assuming that the
period T is distributed in each of the following ways:

a. 1/O first half, processor second half

b. 1/O first and fourth quarters, processor second and third quarters

An [/O-bound program is one that, if run alone, would spend more time waiting
for /O than using the processor. A processor-bound program is the opposite. Sup-
pose a short-term scheduling algorithm favors those programs that have used little
processor time in the recent past. Explain why this algorithm favors 1/0O-bound
programs and yet does not permanently deny processor time to processor-bound
programs.

A program computes the row sums

C,' = Eai)-

=1

of an array A that is 100 by 100. Assume that the computer uses demand paging
with a page size of 1000 words, and that the amount of main memory allotted for
data is five page frames. Is there any difference in the page fault rate if A were
stored in virtual memory by rows or columns? Explain.

Consider a fixed partitioning scheme with equal-size partitions of 216 bytes and a total
main memory size of 2% bytes. A process table is maintained that includes a
pointer to a partition for each resident process. How many bits are required for the
pointer?

Consider a dynamic partitioning scheme. Show that, on average, the memory contains
half as many holes as segments.

Suppose the page table for the process currently executing on the processor looks like
the following. All numbers are decimal, everything is numbered starting from zero,
and all addresses are memory byte addresses. The page size is 1024 bytes.

mnual page Page frame
number Valid bit Reference bit Modify bit number
0 1 1 0 4
1 1 1 1
2 0 0 0 —
3 1 0 0 2
4 0 0 0 —
- 5 1 0 1 0

a. Describe exactly how, in general, a virtual address generated by the CPU is trans-
lated into a physical main memory address.
bh. What physical address, if any, would each of the following virtual addresses corre-
spond to? (Do not try to handle any page faults, if any.)
(i) 1052
(i) 2221
(i) 5499
Give reasons that the page size in a virtual memory system should be neither very
small nor very large.
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8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.16

A process references five pages, A, B, C, D, and E, in the following order:
A;B;C;D;A;B;E:A;B;C;D;E

Assume that the replacement algorithm is first-in-first-out and find the number of

page transfers during this sequence of references starting with an empty main memo-

ry with three page frames. Repeat for four page frames.

The following sequence of virtual page numbers is encountered in the course of exe-
cution on a computer with virtual memory:

342647132635123

Assume that a least recently used page replacement policy is adopted. Plot a graph of
page hit ratio (fraction of page references in which the page is in main memory) as a
function of main-memory page capacity nfor 1 = n < 8. Assume that main memory is
initially empty.

In the VAX computer, user page tables are located at virtual addresses in the system
space. What is the advantage of having user page tables in virtual rather than main
memory? What is the disadvantage?

Suppose the program statement

for (i = 1;i <= n; [+4)
afi] = b[i] + c[i];

is executed in a memory with page size of 1000 words. Let n = 1000. Using a machine
that has a full range of register-to-register instructions and employs index registers,
write a hypothetical program to implement the foregoing statement. Then show the
sequence of page references during execution.

The IBM System/370 architecture uses a two-level memory structure and refers to the
two levels as segments and pages, although the segmentation approach lacks many of
the features described earlier in this chapter. For the basic 370 architecture, the page
size may be either 2 Kbytes or 4 Kbytes, and the segment size is fixed at either
64 Kbytes or 1 Mbyte. For the 370/XA and 370/ESA architectures, the page size is
4 Kbytes and the segment size is 1 Mbyte. Which advantages of segmentation does
this scheme lack? What is the benefit of segmentation for the 370?

Consider a computer system with both segmentation and paging. When a segment is
in memory, some words are wasted on the last page. In addition, for a segment size s
and a page size p, there are s/p page table entries. The smaller the page size, the less
waste in the last page of the segment, but the larger the page table. What page size
minimizes the total overhead?

A computer has a cache, main memory, and a disk used for virtual memory. If a
referenced word is in the cache, 20 ns are required to access it. If it is in main memory
but not in the cache, 60 ns are needed to load it into the cache, and then the reference
is started again. If the word is not in main memory, 12 ms are required to fetch the
word from disk, followed by 60 ns to copy it to the cache, and then the reference is
started again. The cache hit ratio is 0.9 and the main-memory hit ratio is 0.6. What is
the average time in ns required to access a referenced word on this system?

Assume a task is divided into four equal-sized segments and that the system builds

an eight-entry page descriptor table for each segment. Thus, the system has a com-

bination of segmentation and paging. Assume also that the page size is 2 KBytes.

a. What is the maximum size of each segment?

b. What is the maximum logical address space for the task?

¢. Assume that an element in physical location 00021 ABC is accessed by this task.
What is the format of the logical address that the task generates for it? What is the
maximum physical address space for the system?

Assume a microprocessor capable of accessing up to 2* bytes of physical main
memory. It implements one segmented logical address space of maximum size
2°! bytes. Each instruction contains the whole two-part address. External memory
management units (MMUs) are used, whose management scheme assigns contiguous
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blocks of physical memory of fixed size 2% bytes to segments. The starting physical
address of a segment is always divisible by 1024. Show the detailed interconnection of
the external mapping mechanism that converts logical addresses to physical address-
es using the appropriate number of MMUs,and show the detailed internal structure
of an MMU (assuming that each MMU contains a 128-entry directly mapped segment
descriptor cache) and how each MMU is selected.

Consider a paged logical address space (composed of 32 pages of 2 KBytes each)
mapped into a 1-MByte physical memory space.

a. What is the format of the processor’s logical address?

b. What is the length and width of the page table (disregarding the “access rights” bits)?
¢. What is the effect on the page table if the physical memory space is reduced by half?

In IBM’s mainframe operating system, 05/390, one of the major modules in the ker-
nel is the System Resource Manager (SRM). This module is responsible for the allo-
cation of resources among address spaces (processes). The SRM gives OS/390 a
degree of sophistication unique among operating systems. No other mainframe oper-
ating system, and certainly no other type of operating system, can match the functions
performed by SRM. The concept of resource includes processor, real memory, and
/O channels. SRM accumulates statistics pertaining to utilization of processor, chan-
nel, and various key data structures. Its purpose is to provide optimum performance
based on performance monitoring and analysis. The installation sets forth various per-
formance objectives, and these serve as guidance to the SRM, which dynamically
modifies installation and job performance characteristics based on system utilization.
In turn, the SRM provides reports that enable the trained operator to refine the con-
figuration and parameter settings to improve user service.

This problem concerns one example of SRM activity. Real memory is divided
into equal-sized blocks called frames, of which there may be many thousands. Each
frame can hold a block of virtual memory referred to as a page. SRM receives control
approximately 20 times per second and inspects each and every page frame. If the
page has not been referenced or changed, a counter is incremented by 1. Over time,
SRM averages these numbers to determine the average number of seconds that a
page frame in the system goes untouched. What might be the purpose of this and what
action might SRM take?
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Up to this point, we have viewed the CPU essentially as a “black box” and have
considered its interaction with I/O and memory. Part Three examines the internal
structure and function of the CPU. The CPU consists of registers, the arithmetic
and logic unit, the instruction execution unit, a control unit, and the interconnec-
tions among these components. Architectural issues, such as instruction set design
and data types, are covered. The part also looks at organizational issues, such as
pipelining,

ROAD MAP FOR PART THREE

Chépter 9 Computer Arithmetic

Chapter 9 examines the functionality of the ALU and focuses on the
representation of numbers and techniques for implementing arithmetic
operations. Processors typically support two types of arithmetic: inte-
ger, or fixed point, and floating point. For both cases, the chapter first
examines the representation of numbers and then discusses arithmetic
operations. The important IEEE 754 floating-point standard is exam-
ined in detail. ‘

Chapter 10 Instruction Sets: Characteristics and Functions

From a programmer’s point of view, the best way to understand the
operation of a processor is to learn the machine instruction set that it ex-
ecutes. The complex topic of instruction set design occupies Chapters 10
and 11. Chapter 10 focuses on the functional aspects of instruction set
design. The chapter examines the types of functions that are specified
by computer instructions and then looks specifically at the types of
operands (which specify the data to be operated on) and the types of op-
erations (which specify the operations to be performed) commonly found




in instruction sets. Then the relationship of processor instructions to as-
sembly language is briefly explained. i .

Chapter 11 Instruction Sets: Addressing Modes and For
Whereas Chapter 10 can be viewed as dealing with the semantics in- 1
struction sets, Chapter 11 is more concerned with the syntax of in-
struction sets. Specifically, Chapter 11 looks-at the way in which
memory addresses are specified and at the overall format of computer |
instructions. A s

Chapter 12 CPU Structure and Function

Chapter 12 is devoted to a discussion of the internal structure and func-
tion of the processor. The chapter describes the use of registers as the
CPU’s internal memory and then pulls together all of the material cov-
ered so far to provide an overview of CPU structure and function. The
overall organization (ALU, register file, control unit) is reviewed. Then
the organization of the register file is discussed. The remainder of the
chapter describes the functioning of the processor in executing ma-
chine instructions. The instruction cycle is examined to show the func-
tion and interrelationship of fetch, indirect, execute, and interrupt
cycles. Finally, the use of pipelining to improve performance is explored
in depth.

Chapter 13 Reduced Instruction Set Computers .

The remainder of Part Three looks in more detail at the key trends in
CPU design. Chapter 13 describes the approach associated with the con-
_cept of a reduced instruction set computer (RISC), which is one of the
most significant innovations in computer organization and architecture in
recent years. RISC architecture is a dramatic departure from the histori-
cal trend in processor architecture. An analysis of this approach brings
into focus many of the important issues in computer organization and ar-
chitecture. The chapter examines the motivation for the use of RISC de-"
sign and then looks at the details of RISC instruction set design and RISC
CPU architecture and compares RISC with the complex instruction set

computer (CISC) approach.

Chapter 14 Instruction-Level Parallelism and Superscalai' !
Processors :

Chapter 14 examines an even more recent and equally important design
innovation: the superscalar processor. Although superscalar technology
can be used on any processor, it is especially well snited to a RISC archi-
tecture. The chapter also looks at the general issue of instruction-level
parallelism.

287
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. numbers are represented (the binary format) and the algomhmumd for

the basic arithmetic operations (add, subtract, multiply, divide
~ considerations apply both to integer and floating-point arith
- Floating-point numbers are expressed as a number (signifi
- plied by a constant (base) raised to some integer power Xpone
Floating-point numbers can be used to represent very large and very
small numbers, . g
€ Most processors implement the IEEE 754 standard for ﬂoatiﬁg~point rep- .
resentation and floating-point arithmetic. IEEE 754 defines both a 32-bit
- and a 64-bit format. : TR

We begin our examination of the processor with an overview of the arithmetic and
logic unit (ALU). The chapter then focuses on the most complex aspect of the ALU,
computer arithmetic. The logic functions that are part of the ALU are described in
Chapter 10, and implementations of simple logic and arithmetic functions in digital
logic are described in Appendix B of this book.

Computer arithmetic is commonly performed on two very different types
of numbers: integer and floating point. In both cases, the representation chosen is
a crucial design issue and is treated first, followed by a discussion of arithmetic
operations.

This chapter includes a number of examples, each of which is highlighted in a
shaded box.

9.1 THE ARITHMETIC AND LOGIC UNIT

The ALU is that part of the computer that actually performs arithmetic and logical
operations on data. All of the other elements of the computer system—control unit,
registers, memory, I/O—are there mainly to bring data into the ALU for it to
process and then to take the results back out. We have, in a sense, reached the core
or essence of a computer when we consider the ALU.

An ALU and, indeed, all electronic components in the computer are based on
the use of simple digital logic devices that can store binary digits and perform simple
Boolean logic operations. For the interested reader, Appendix B explores digital
logic implementation.

Figure 9.1 indicates, in general terms, how the ALU is interconnected with
the rest of the processor. Data are presented to the ALU in registers, and the
results of an operation are stored in registers. These registers are temporary stor-
age locations within the processor that are connected by signal paths to the ALU
(e.g., see Figure 2.3). The ALU may also set flags as the result of an operation.
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Control

R Flags
unit

Registers ——— Registers

Figure 9.1 ALU Inputs and Outputs

For example, an overflow flag is set to 1 if the result of a computation exceeds the
length of the register into which it is to be stored. The flag values are also stored in
registers within the processor. The control unit provides signals that control the
operation of the ALU and the movement of the data into and out of the ALU.

8 9.2 INTEGER REPRESENTATION

In the binary number system,' arbitrary numbers can be represented with just the
digits zero and one, the minus sign, and the period, or radix point.

—-1101.0101, = —13.312559

For purposes of computer storage and processing, however, we do not have the
benefit of minus signs and periods. Only binary digits (0 and 1) may be used to
represent numbers. If we are limited to nonnegative integers, the representation is
straightforward.

An 8-bit word can represent the numbers from 0 to 255, including

00000000 = O
00000001 = 1
00101001 = 41
10000000 = 128

11111111 = 255

In general, if an n-bit sequence of binary digits a,-1d,-2 - - @140 1S interpreted
as an unsigned integer A, its value is

n—t
A= 24

i=0

ISee Appendix A for a basic refresher on number systems (decimal, binary, hexadecimal).
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Sign-Magnitude Representation

There are several alternative conventions used to represent negative as well as pos-
itive integers, all of which involve treating the most significant (leftmost) bit in the
word as a sign bit. If the sign bit is 0, the number is positive; if the sign bit is 1, the
number is negative.

‘The simplest form of representation that employs a sign bit is the sign-magni-
tude representation. In an n-bit word, the rightmost n — 1 bits hold the magnitude
of the integer.

+18 = 00010010
—18 =10010010  (sign magnitude)

The general case can be expressed as follows:

n-2

>2a; ifa,.; =0
i=0

A=47 9.1)
—22’&,- ifa, ;=1
i=0

Sign Magnitude

There are several drawbacks to sign-magnitude representation. One is that addi-
tion and subtraction require a consideration of both the signs of the numbers and their
relative magnitudes to carry out the required operation. This should become clear in the
discussion in Section 9.3. Another drawback is that there are two representations of 0:

+0;5 = 00000000
=00 = 10000000  (sign magnitude)

This is inconvenient because it is slightly more difficult to test for 0 (an operation
performed frequently on computers) than if there were a single representation.

Because of these drawbacks, sign-magnitude representation is rarely used in
implementing the integer portion of the ALU. Instead, the most common scheme is
twos complement representation.?

Twos Complement Representation

Like sign magnitude, twos complement representation uses the most significant bit
as a sign bit, making it easy to test whether an integer is positive or negative. It dif-
fers from the use of the sign-magnitude representation in the way that the other
bits are interpreted. Table 9.1 highlights key characteristics of twos complement
representation and arithmetic, which are elaborated in this section and the next.
Most treatments of twos complement representation focus on the rules for pro-
ducing negative numbers, with no formal proof that the scheme “works.” Instead, our
presentation of twos complement integers in this section and in Section 9.3 is based on
[DATT93], which suggests that twos complement representation is best understood

*In the literature, the terms two’s complement or 2’s complement are often used. Here we follow the prac-
tice used in standards documents and omit the apostrophe (e.g.. IEEE Std 100-1992, The New [EEE
Standard Dictionary of Electrical and Electronics Terms).
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Table 9.1 Characteristics of Twos Complement Representation and Arithmetic

Range . . =2*lthrough 2" =1
Number of Representations SRR
of Zero One T

Take the Boolean complement of each bit of the
Negation corresponding positive number, then add 1 to the resulting

bit pattern viewed as an unsigned integer. . .
Add additional bit positions to the left and fillin with the

Expansion of Bit Length

value of the original sign bit. Sl
If two numbers with the same sign (both positive of both
Overflow Rule negative) are added, then overflow occurs if and only
if the result has the oppositesign. =
Subtraction Rule To subtract B from A, take the twos cor :tqgiB

and add it to A.

by defining it in terms of a weighted sum of bits, as we did previously for unsigned and
sign-magnitude representations. The advantage of this treatment is that it does not
leave any lingering doubt that the rules for arithmetic operations in twos complement
notation may not work for some special cases.

Consider an n-bit integer, A, in twos complement representation. If A is posi-
tive, then the sign bit, a,—y, is ZeTo. The remaining bits represent the magnitude of
the number in the same fashion as for sign magnitude:

n-2
A=32a forA=0
=0

The number zero is identified as positive and therefore has a 0 sign bit and a magni-
tude of all 0s. We can see that the range of positive integers that may be represented
is from O (all of the magnitude bits are 0) through 2n=1 — 1 (all of the magnitude
bits are 1). Any larger number would require more bits.

Now, for a negative number A (A < 0), the sign bit,a, -y, is one. The remaining
n — 1 bits can take on any one of 211 yalues. Therefore, the range of negative inte-
gers that can be represented is from —1 to —27-1_We would like to assign the bit
values to negative integers in such a way that arithmetic can be handled in a straight-
forward fashion, similar to unsigned integer arithmetic. In unsigned integer represen-
tation, to compute the value of an integer from the bit representation, the weight of
the most significant bit is +27~1, For a representation with a sign bit, it turns out that
the desired arithmetic properties are achieved, as we will see in Section 9.3, if the
weight of the most significant bit is —2"~L. This is the convention used in twos com-

plement representation, yielding the following expression for negative numbers:
n-2
Twos Complement A = 2", + 22‘(1,- 9.2)
i=0

In the case of positive integers, a,- = 0, so the term —2n"1g, | = 0. Therefore,
Equation (9.2) defines the twos complement representation for both positive and
negative numbers.
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Table 9.2 Alternative Representations for 4-Bit Integers

Sign-Magnitude Twos Complement Biased
- Representation Representation Representation
- — Cun
o111 0111 1110
0110 0110 1101
0101 0101 1100
0100 ) 0100 1011
0011 -~ 0011 1010
0010 0010 1001
0001 0001 1000
0000 0000 0111
1000 — —
1001 1111 0110
1010 1110 0101
1011 1101 0100
1100 1100 ' 0011
1101 1011 ‘ 0010
1110 1010 . 0001
1111 1001 0000
—_— 1000 —_—

Table 9.2 compares the sign-magnitude and twos complement representations
for 4-bit integers. Although twos complement is an awkward representation from
the human point of view, we will see that it facilitates the most important arithmetic
operations, addition and subtraction. For this reason, it is almost universally used as
the processor representation for integers.

A useful illustration of the nature of twos complement representation is a value
box, in which the value on the far right in the box is 1 (2°) and each succeeding
position to the left is double in value, until the leftmost position, which is negated.
As you can see in Figure 9.2a, the most negative twos complement number that
can be represented is —2": if any of the bits other than the sign bit is one, it adds
a positive amount to the number. Also, it is clear that a negative number must have
a 1 at its leftmost position and a positive number must have a 0 in that position. Thus,
the largest positive number is a 0 followed by all 1s, which equals 2" ! — 1.

The rest of Figure 9.2 illustrates the use of the value box to convert from twos
complement to decimal and from decimal to twos complement.

Converting between Different Bit Lengths

It is sometimes desirable to take an n-bit integer and store it in m bits, where m > n.
In sign-magnitude notation, this is easily accomplished: simply move the sign bit to
the new leftmost position and fill in with zeros.
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[Cizses [ 32| 16| 8 s |2 |1

L

(a) An eight-position twos complement value box

‘Tl286432168421
!

u) 0 0 0 0 1 1

—128 +2 +1 =-125
(b) Convert binary 10000011 to decimal

\Tl286432168421

rlOOOIOOO

—120=—128 +8
(c) Convert decimal — 120 to binary

Figure 9.2 Useofa Value Box for Conversion between
Twos Complement Binary and Decimal

+18 = - 0010010 - (sign magnitude, Bbits) -
+18 = 0000000000010010 ~ (sign magnitude, 16 bits)
18 = 110010010 . (sign magnitude, 8 bits)
—18 = 1000000000010010  (sign magmtmmm)

This procedure will not work for twos complement negative integers. Using the
same example,

+18 = 00010010

+18 = 0000000000010010 - {
18 = 11101110 . (twoseo
—32,658 = . 1000000001101110 ;

The next to last line is easily seen using thevalge box >f Figu
can be verified using Equation (9.2) ora 16-bit value | > S

Instead, the rule for twos complement integers is to move the sign bit to the
new leftmost position and fill in with copies of the sign bit. For positive numbers, fill
in with zeros, and for negative numbers, fill in with ones. This is called sign extension.

-8 = 11101110 (twos comipieme ﬁ;ﬁ 5y
18 = 1111111111101110  (twos complement, 16 bits)

To see why this rule works, let us again consider an n-bit sequence of binary dig-
itsa,_1a,—2-.- 4100 interpreted as a twos complement integer A, so that its value is

n-2
A=-2"la,_ + 22
=0
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If A is a positive number, the rule clearly works. Now, if A is negative and we want
to construct an m-bit representation, with m > n. Then

m=2
A= —2'""1am*1 + 22’0,’
i=0
The two values must be equal:

-2 -2
—2m-1 4 "!22ia< = -2nl 4 ’122ia-
13 13

=0 i=0

_ym-1 "l i __~n-1
2 + 22(1,‘— 2

i=n—1
m-—2 .
2n—1 + 2 zlai — 2m—1
i=n—1
n—2 ) m-2 . m-—2 )
1+ 32+ S 2g =1+ 32
i=0 i=n-1 i=0
m-2 m—2 )
> 2a= X 2
i=n—-1 i=n-1
=> am_z = see = an_z = an*l = 1

In going from the first to the second equation, we require that the least signif-
icant n — 1 bits do not change between the two representations. Then we get to the
next to last equation, which is only true if all of the bits in positions n — 1 through
m — 2 are 1. Therefore, the sign-extension rule works.

Fixed-Point Representation

Finally, we mention that the representations discussed in this section are sometimes
referred to as fixed point. This is because the radix point (binary point) is fixed and
assumed to be to the right of the rightmost digit. The programmer can use the same
representation for binary fractions by scaling the numbers so that the binary point is
implicitly positioned at some other location.

9.3 INTEGER ARITHMETIC

This section examines common arithmetic functions on numbers in twos comple-
ment representation.

Negation

In sign-magnitude representation, the rule for forming the negation of an integer is
simple: Invert the sign bit. In twos complement notation, the negation of an integer
can be formed with the following rules:
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1. Take the Boolean complement of each bit of the integer (including the sign
bit). That is, set each 1 to Oand eachOto 1.

2. Treating the result as an unsigned binary integer, add 1.

This two-step process is referred to as the twos complement operation, or the taking
of the twos complement of an integer.

“bitwise complement = - 11101101

B

As expected, the negative of the negative of that number is itself:

We can demonstrate the validity of the operation just described using the def-
inition of the twos complement representation in Equation (9.2). Again, interpret an
n-bit sequence of binary digits a,-1@,-2..- @190 38 @ twos complement integer A, s0
that its value is

n-2
A=-2""a, + D2
i=0

Now form the bitwise complement, @, dp-2--- a@,, and, treating this is an unsigned
integer, add 1. Finally, interpret the resulting n-bit sequence of binary digits as a
twos complement integer B, so that its value is

n—2

B= -2l +1+ 224G
i=0

Now,we want A = —B, which means A + B = 0.Thisis easily shown to be true:

Il

n—-2
A+B=—(an, +aG)2" ' +1+ (Ezi(a,- + a))
i=0

n-2
=2l a1+ (22')
i=0
=y 14+ (2 =1)
= ___2n—1 + 2n—1 =0

The preceding derivation assumes that we can first treat the bitwise complement
of A as an unsigned integer for the purpose of adding 1, and then treat the result
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as a twos complement integer. There are two special cases to consider. First, con-
sider A = 0. In that case, for an 8-bit representation:

’ - 100000000 = 0
There is carry out of the most significant bit position, which is ignored. The result is
that the negation of 0 is 0, as it should be.

The second special case is more of a problem. If we take the negation of the bit

pattern of 1 followed by n — 1 zeros, we get back the same number. For example, for
8-bit words,

10000000 (twos complement)
o1y .
10000000 = —128

Some such anomaly is unavoidable. The number of different bit patterns in an
n-bit word is 2", which is an even number. We wish to represent positive and nega-
tive integers and 0. If an equal number of positive and negative integers are repre-
sented (sign magnitude), then there are two representations for 0. If there is only
one representation of O (twos complement), then there must be an unequal number
of negative and positive numbers represented. In the case of twos complement, for
an n-bit length, there is a representation for —2"~! but not for +27"!.

Addition and Subtraction

Addition in twos complement is illustrated in Figure 9.3. Addition proceeds as if the two
numbers were unsigned integers. The first four examples illustrate successful operations.
If the result of the operation is positive, we get a positive number in twos complement

1001 = -7 1100 = -4
+0101 = 5 +0100 = 4
1110 = -2 0000 = 0
@) (=7) + (+5) () (=4) + (+4)
0011 = 3 1100 = -4
+0100 = 4 +1111 = -1
0111 = 7 §io11 = 5
(©) (+3) + (+4) @ =4+ (-1
0101 = 5 1001 = -7
+0100 = 4 +1010 = -6
1001 = Overflow %0011 = overflow
(e) (+5) + (+4) O (=7 + (-6

Figure 9.3  Addition of Numbers in Twos Complement
Respresentation
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form, which is the-same as in unsigned-integer form. If the result of the operation is neg-
ative, we get a negative number in twos complement form. Note that, in some instances,
there is a carry bit beyond the end of the word (indicated by shading), which is ignored.

On any addition, the result may be larger than can be held in the word size
being used. This condition is called overflow. When overflow occurs, the ALU must
signal this fact so that no attempt is made to use the result. To detect overflow, the
following rule is observed:

Wmumm '

Figures 9.3e and £ show examples of overflow. Note that overflow can occur
whether or not there is a carry.
Subtraction is easily handled with the following rule:

Thus, subtraction is achieved using addition, as illustrated in Figure 9.4. The
last two examples demonstrate that the overflow rule still applies.

Some insight into twos complement addition and subtraction can be gained
by looking at a geometric depiction [BENH92], as shown in Figure 9.5. The circle

0010 = 2 0101 = 5
+1001 = -7 +1110 = -2
1011 = -5 ool = 3
(a) M = 2 = 0010 (b) M = 5 = 0101
g =7 = 0111 g = 2 = 0010
-5 = 1001 -s = 1110
1011 = -5 0101 = 5
+1110 = -2 +0010 = 2
§io01 = -7 0111 = 7
(c) M =-5 = 1011 (@) M = 5 = 0101
s =2 = 0010 s =-2 = 1110
-s = 1110 -5 = 0010
0111 = 7 1010 = -6
+0111 = 7 +1100 = -4
1110 = Overflow §0110 = overflow
(e) M = 7 = 0111 (f) M = -6 = 1010
g = -7 = 1001 s = 4 = 0100
-5 = 0111 -S = 1100

Figure 9.4 Subtraction of Numbers in Twos Complement
Representation (M — S)
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